User interface language: English | Español

SL Paper 3

In order to provide safe drinking water, a water supply is often treated with disinfectants, which aim to inactivate disease-causing bacteria in the water.

To compare the effectiveness of different disinfectants, a CT value is used as a measure of the dosage of disinfectant needed to achieve a certain level of inactivation of specific bacteria.

CT value (mg min dm−3) = C (mg dm−3) concentration of disinfectant × T (min) contact time with water

The table below compares the CT values of different disinfectants necessary to achieve 99% inactivation of two types of bacteria, listed as A and B.

(i) Deduce the oxidation state of chlorine in the following disinfectants.

(ii) From the data on CT values, justify the statement that bacterium B is generally more resistant to disinfection than bacterium A.

(iii) CT values can be used to determine whether a particular treatment process is adequate. Calculate the CT value, in mg min dm−3, when 1.50 × 10−5 g dm−3 of chlorine dioxide is added to a water supply with a contact time of 9.82 minutes.

(iv) From your answer to (a) (iii) and the data in the table, comment on whether this treatment will be sufficient to inactivate 99% of bacterium A.

[4]
a.

CT values are influenced by temperature and by pH. The table below shows the CT values for chlorine needed to achieve 99% inactivation of a specific bacterium at stated values of pH and temperature.

(i) With reference to the temperature data in the table, suggest why it may be more difficult to treat water effectively with chlorine in cold climates.

(ii) Sketch a graph on the axes below to show how the CT value (at any temperature) varies with pH.

(iii) Comment on the relative CT values at pH 6.0 and pH 9.0 at each temperature.

(iv) Chlorine reacts with water as follows:

Cl2 (g) + H2O (l)  HOCl (aq) + HCl (aq)

HOCl (aq)  OCl (aq) + H+ (aq)

Predict how the concentrations of each of the species HOCl (aq) and OCl (aq) will change if the pH of the disinfected water increases.

[4]
b.

Despite widespread improvements in the provision of safe drinking water, the sale of bottled water has increased dramatically in recent years. State one problem caused by this trend.

[1]
c.



A class was determining the concentration of aqueous sodium hydroxide by titrating it with hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a burette. One group of students accidentally used a temperature probe rather than a pH probe. Their results are given below.

Volume of aqueous NaOH = 25.0 ± 0.5 cm3

Concentration of HCl = 1.00 ± 0.01 mol dm−3

Calculate the percentage uncertainty of the volume of the aqueous sodium hydroxide.

[1]
a.

Suggest how the precision of this measurement could be improved.

[1]
b.



Solubility plays an important role in the bioavailability of drugs in the body.

Suggest why aspirin is slightly soluble in water. Refer to section 37 of the data booklet.

[2]
a.

Formulate an equation for the conversion of aspirin to a more water soluble derivative.

[1]
b.

A student prepares aspirin from salicylic acid in the laboratory, extracts it from the reaction mixture, ensures the sample is dry and determines its melting point.

Suggest why the melting point of the student’s sample is lower and not sharp compared to that of pure aspirin.

[2]
c.

Organic molecules can be characterized using infrared (IR) spectroscopy.

Compare and contrast the infrared peaks above 1500 cm−1 in pure samples of aspirin and salicylic acid using section 26 of the data booklet.

[2]
d.

The pharmaceutical industry is one of the largest producers of waste solvents.

State a green solution to the problem of organic solvent waste.

[1]
e.



In order to determine the oil content of different types of potato crisps (chips), a student weighed 5.00g of crushed crisps and mixed them with 20.0cm3 of non-polar solvent.

She assumed all the oil in the crisps dissolved in the solvent.

The student then filtered the mixture to remove any solids, and gently heated the solution on a hot plate to evaporate the solvent.

She measured the mass of the oil that remained from each type of crisps

Suggest why a non-polar solvent was needed.

[1]
a.

State one reason why the mixture was not heated strongly.

[1]
b.

Non-polar solvents can be toxic. Suggest a modification to the experiment which allows the evaporated solvent to be collected.

[1]
c.

Suggest one source of error in the experiment, excluding faulty apparatus and human error, that would lead to the following:

[2]
d.



A class was determining the concentration of aqueous sodium hydroxide by titrating it with hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a burette. One group of students accidentally used a temperature probe rather than a pH probe. Their results are given below.

Volume of aqueous NaOH = 25.0 ± 0.5 cm3

Concentration of HCl = 1.00 ± 0.01 mol dm−3

Suggest how the end point of the titration might be estimated from the graph.




A class was determining the concentration of aqueous sodium hydroxide by titrating it with hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a burette. One group of students accidentally used a temperature probe rather than a pH probe. Their results are given below.

Volume of aqueous NaOH = 25.0 ± 0.5 cm3

Concentration of HCl = 1.00 ± 0.01 mol dm−3

The graph of temperature against titre can be used to calculate the concentration of alkali without knowing the concentration of the hydrochloric acid, using the enthalpy of neutralization.

Explain how the concentration may be calculated in this way.

[2]
a.

Heat losses would make this method less accurate than the pH probe method. Outline why the thermometric method would always give a lower, not a higher, concentration.

[2]
b.

Suggest how heat loss could be reduced.

[1]
c.

State one other assumption that is usually made in the calculation of the heat produced.

[1]
d.

Suggest why scientists often make assumptions that do not correspond to reality.

[1]
e.

Outline why the thermochemical method would not be appropriate for 0.001 mol dm−3 hydrochloric acid and aqueous sodium hydroxide of a similar concentration.

[1]
f.



Medicines have a variety of different effects on the body and act at the molecular level.

Morphine and codeine are strong analgesics. Their structures are given in section 37 of the data booklet.

Dose response curves are determined for each drug.

M17/4/CHEMI/SP3/ENG/TZ1/XX

Outline the significance of range “a”.

[1]
a.

Suggest the type of reaction used to convert morphine to codeine.

[1]
b.i.

State and explain the action of opiates as painkillers.

[2]
b.ii.



There is a link between world energy consumption and carbon dioxide production.

Climate induced changes in the ocean can be studied using measurements such as the Atmospheric Potential Oxygen (APO). Trends in APO concentration from two stations, one in each hemisphere, are shown below.

Trends in atmospheric potential oxygen (APO) based on monthly averages between 1990 and 2010.

[Source: www.ioos.noaa.gov]

The following graph represents world energy consumption by type for the years 1988–2013.

Estimate the percentage of energy consumption which did not directly produce CO2 in 2013.

[1]
a.

O2 is consumed in producing CO2 for electricity generation. The graph shows the relationship between the world’s electricity generation and CO2 production between 1994 and 2013.

Calculate the mass, in million tonnes, of oxygen gas ultimately found in CO2 which is consumed in generating 18 000 terawatts of electricity using the equation given for the best fit line. Give your answer to 2 significant figures.

Assume coal is the only energy source.

[2]
b.

The equilibrium expression for O2 exchange between the atmosphere and ocean is O2(g)  O2(aq). Identify one factor which shifts the equilibrium to the right.

[1]
c.i.

Factors such as photosynthesis and respiration are excluded so that APO is influenced by oceanic changes only. Suggest why the seasonal cycles from Alert station and Cape Grim observatory are different.

[2]
c.ii.

The change in APO O2/N2 ratio, per meg, is measured relative to an O2/N2 reference.

Δ ( O 2 / N 2 ) = ( ( O 2 / N 2 ) sample ( O 2 / N 2 ) reference 1 ) × 10 6

Calculate the APO Δ(O2/N2) value for an oxygen concentration of 209 400 ppm assuming that any change in N2 concentration is negligible. Reference values for O2 and N2 are 209 460 and 790 190 ppm respectively.

[1]
c.iii.

Suggest a reason for the general negative gradient of the APO curve given in (c).

[1]
c.iv.



Sodium chloride, NaCl, can be spread on icy roads to lower the freezing point of water.

The diagram shows the effects of temperature and percentage by mass of NaCl on the composition of a mixture of NaCl and H2O.

Estimate the lowest freezing point of water that can be reached by adding sodium chloride.

[1]
a.

Estimate the percentage by mass of NaCl dissolved in a saturated sodium chloride solution at +10 ºC.

[1]
b.

Calculate the percentage of water by mass in the NaCl•2H2O crystals. Use the data from section 6 of the data booklet and give your answer to two decimal places.

[2]
c.

Suggest a concern about spreading sodium chloride on roads.

[1]
d.



Disposable plastic lighters contain butane gas. In order to determine the molar mass of butane, the gas can be collected over water as illustrated below:

List the data the student would need to collect in this experiment.

[4]
a.

Explain why this experiment might give a low result for the molar mass of butane.

[2]
b.i.

Suggest one improvement to the investigation.

[1]
b.ii.



Infrared (IR) spectroscopy is often used for the identification of polymers, such as PETE, for recycling.

LDPE and high density polyethene (HDPE) have very similar IR spectra even though they have rather different structures and physical properties.

Below are the IR spectra of two plastics (A and B); one is PETE, the other is low density polyethene (LDPE).

Deduce, giving your reasons, the identity and resin identification code (RIC) of A and using sections 26 and 30 of the data booklet.

[3]
a.

Describe the difference in their structures.

[1]
b.i.

Explain why the difference in their structures affects their melting points.

[2]
b.ii.



Infrared (IR) spectra can be used to distinguish between various types of plastics. Some simplified IR spectra are given here.

Explain, with a reference to molecular structure, which two of the plastics can not be distinguished by IR spectroscopy.

 




Students were asked to investigate how a change in concentration of hydrochloric acid, HCl, affects the initial rate of its reaction with marble chips, CaCO3.

They decided to measure how long the reaction took to complete when similar chips were added to 50.0 cm3 of 1.00 mol dm−3 acid and 50.0 cm3 of 2.00 mol dm−3 acid.

Two methods were proposed:

(1)     using small chips, keeping the acid in excess, and recording the time taken for the solid to disappear

(2)     using large chips, keeping the marble in excess, and recording the time taken for bubbles to stop forming.

A group recorded the following results with 1.00 mol dm−3 hydrochloric acid:

M18/4/CHEMI/SP3/ENG/TZ1/02.d

Annotate the balanced equation below with state symbols.

CaCO3(__) + 2HCl(__) → CaCl2(__) + CO2(__) + H2O(__)

[1]
a.

Neither method actually gives the initial rate. Outline a method that would allow the initial rate to be determined.

[1]
b.

Deduce, giving a reason, which of the two methods would be least affected by the chips not having exactly the same mass when used with the different concentrations of acid.

[1]
c.i.

State a factor, that has a significant effect on reaction rate, which could vary between marble chips of exactly the same mass.

[1]
c.ii.

Justify why it is inappropriate to record the uncertainty of the mean as ±0.01 s.

[1]
d.i.

If doubling the concentration doubles the reaction rate, suggest the mean time you would expect for the reaction with 2.00 mol dm−3 hydrochloric acid.

[1]
d.ii.

Another student, working alone, always dropped the marble chips into the acid and then picked up the stopwatch to start it. State, giving a reason, whether this introduced a random or systematic error.

[1]
d.iii.



The development of materials with unique properties is critical to advances in industry.

Low density polyethene (LDPE) and high density polyethene (HDPE) are both addition polymers.

Outline two properties a substance should have to be used as liquid-crystal in a liquid-crystal display.

[2]
a.

Describe how the structures of LDPE and HDPE affect one mechanical property of the plastics.

[2]
b.i.

One of the two infrared (IR) spectra is that of polyethene and the other of polytetrafluoroethene (PTFE).

Deduce, with a reason, which spectrum is that of PTFE. Infrared data is given in section 26 of the data booklet.

[1]
b.ii.

Many plastics used to be incinerated. Deduce an equation for the complete combustion of two repeating units of PVC, (–C2H3Cl–)2.

[2]
c.



Amino acids are the building blocks of proteins.

Draw the dipeptide represented by the formula Ala-Gly using section 33 of the data booklet.

[2]
a.

Deduce the number of 1H NMR signals produced by the zwitterion form of alanine.

[1]
b.

Outline why amino acids have high melting points.

[2]
c.



Alloys containing at least 60 % copper reduce the presence of bacteria on their surface.The percentage of copper in brass, an alloy of copper and zinc, can be determined by UV-vis spectrometry.

A sample of brass is dissolved in concentrated nitric acid and then made up to 250.0 cm3 with water before analysis.

Cu (s) + 4HNO3 (aq) → Cu(NO3)2 (aq) + 2NO2 (g) + 2H2O (l)

3Zn (s) + 8HNO3 (aq) → 3Zn(NO3)2 (aq) + 2NO (g) + 4H2O (l)

The concentration of copper(II) ions in the resulting solution is then determined from a calibration curve, which is plotted by measuring the light absorbance of standard solutions.

Titration is another method for analysing the solution obtained from adding brass to nitric acid.

Outline why the initial reaction should be carried out under a fume hood.

[1]
a.

Deduce the equation for the relationship between absorbance and concentration.

[2]
b.

Outline how a solution of 0.0100 mol dm−3 is obtained from a standard 1.000 mol dm−3 copper(II) sulfate solution, including two essential pieces of glassware you would need.

[3]
c.

The original piece of brass weighed 0.200 g. The absorbance was 0.32.

Calculate, showing your working, the percentage of copper by mass in the brass.

[3]
d.i.

Deduce the appropriate number of significant figures for your answer in (d)(i).

[1]
d.ii.

Comment on the suitability of using brass of this composition for door handles in hospitals.

If you did not obtain an answer to (d)(i), use 70 % but this is not the correct answer.

[1]
e.i.

Suggest another property of brass that makes it suitable for door handles.

[1]
e.ii.

Copper(II) ions are reduced to copper(I) iodide by the addition of potassium iodide solution, releasing iodine that can be titrated with sodium thiosulfate solution, Na2S2O3 (aq). Copper(I) iodide is a white solid.

4I (aq) + 2Cu2+ (aq) → 2CuI (s) + I2 (aq)

I2 (aq) + 2S2O32− (aq) → 2I (aq) + S4O62− (aq)

Deduce the overall equation for the two reactions by combining the two equations.

[2]
f.i.

Suggest why the end point of the titration is difficult to determine, even with the addition of starch to turn the remaining free iodine black.

[1]
f.ii.



A class was determining the concentration of aqueous sodium hydroxide by titrating it with hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a burette. One group of students accidentally used a temperature probe rather than a pH probe. Their results are given below.

Volume of aqueous NaOH = 25.0 ± 0.5 cm3

Concentration of HCl = 1.00 ± 0.01 mol dm−3

State and explain how the graph would differ if 1 mol dm−3 sulfuric acid had been used instead of 1 mol dm−3 hydrochloric acid.




Physical properties of elements vary according to atomic number. Sections 6 to 9 of the data booklet list some of these properties.

Deduce, giving a reason, the group of elements in the periodic table most likely to undergo sublimation.

[2]
a.

Describe the density trend across periods 4 and 5 of the periodic table.

[1]
b(i).

Suggest, with a reason, whether the lanthanoids or actinoids of the f-block would have the higher density.

[1]
b(ii).

Compare the ease of oxidation of s-block and d-block metals to their melting points and densities. Use section 25 of the data booklet.

[2]
b(iii).

Sketch how the first ionization energies of elements vary with their atomic radius.

 

[1]
b(iv).



Antacids react with hydrochloric acid in the stomach to relieve indigestion. A student investigated different brands of antacid to see which caused the largest increase in pH in a given time. She added the antacids to hydrochloric acid, and recorded the change in pH over five minutes.

State an equation for the reaction of magnesium hydroxide with hydrochloric acid.

[1]
a.

Suggest two variables, besides the time of reaction, which the student should have controlled in the experiment to ensure a fair comparison of the antacids.

[2]
b.

Calculate the uncertainty in the change in pH.

[1]
c.

The student concluded that antacid B was the most effective, followed by A then C and finally D. Discuss two arguments that reduce the validity of the conclusion.

[2]
d.



A student investigated how the type of acid in acid deposition affects limestone, a building material mainly composed of calcium carbonate.

The student monitored the mass of six similarly sized pieces of limestone. Three were placed in beakers containing 200.0 cm3 of 0.100 mol dm−3 nitric acid, HNO3 (aq), and the other three in 200.0 cm3 of 0.100 mol dm−3 sulfuric acid, H2SO4 (aq).

The limestone was removed from the acid, washed, dried with a paper towel and weighed every day at the same time and then replaced in the beakers.

The student plotted the mass of one of the pieces of limestone placed in nitric acid against time.

[Source: © International Baccalaureate Organization 2019]

The student hypothesized that sulfuric acid would cause a larger mass loss than nitric acid.

Draw a best-fit line on the graph.

[1]
a.

Determine the initial rate of reaction of limestone with nitric acid from the graph.

Show your working on the graph and include the units of the initial rate.

[3]
b(i).

Explain why the rate of reaction of limestone with nitric acid decreases and reaches zero over the period of five days.

[2]
b(ii).

Suggest a source of error in the procedure, assuming no human errors occurred and the balance was accurate.

[1]
b(iii).

Justify this hypothesis.

[1]
c(i).

The student obtained the following total mass losses.

She concluded that nitric acid caused more mass loss than sulfuric acid, which did not support her hypothesis.

Suggest an explanation for the data, assuming that no errors were made by the student.

[1]
c(ii).



An investigation was carried out to determine the effect of chain length of the alcohol on the equilibrium constant, Kc, for the reversible reaction:

ROH+CH3COOHH+aq CH3COOR+H2O

The reactants, products and the catalyst form a homogeneous mixture.

Fixed volumes of each alcohol, the ethanoic acid and the sulfuric acid catalyst were placed in sealed conical flasks.

At equilibrium, the flasks were placed in an ice bath, and samples of each flask titrated with NaOH(aq) to determine the ethanoic acid concentration present in the equilibrium mixture.

The following processed results were obtained.

© International Baccalaureate Organization 2020

Identify the independent and dependent variables in this experiment.

[1]
a.

The ice bath is used at equilibrium to slow down the forward and reverse reactions. Explain why adding a large amount of water to the reaction mixture would also slow down both reactions.

[2]
b.

Suggest why the titration must be conducted quickly even though a low temperature is maintained.

[1]
c.

An additional experiment was conducted in which only the sulfuric acid catalyst was titrated with NaOH(aq). Outline why this experiment was necessary.

[1]
d.

Calculate the percentage uncertainty and percentage error in the experimentally determined value of Kc for methanol.

[2]
e.

Comment on the magnitudes of random and systematic errors in this experiment using the answers in (e).

[2]
f.

Suggest a risk of using sulfuric acid as the catalyst.

[1]
g.



This question is about a mug made of a lead alloy.

The rate of lead dissolving in common beverages with various pH values was analysed.

Bromine and methanoic acid react in aqueous solution.

Br2 (aq) + HCOOH (aq) → 2Br (aq) + 2H+ (aq) + CO2 (g)

The reaction was monitored by measuring the volume of carbon dioxide produced as time progressed.

Determine from the graph the rate of reaction at 20 s, in cm3 s−1, showing your working.

[3]
a.

Outline, with a reason, another property that could be monitored to measure the rate of this reaction.

[2]
b.

Examine, giving a reason, whether the rate of lead dissolving increases with acidity at 18 °C.

[1]
b(ii).

Describe one systematic error associated with the use of the gas syringe, and how the error affects the calculated rate.

[2]
c(i).

Identify one error associated with the use of an accurate stopwatch.

[1]
c(ii).



A student set up a simple voltaic cell consisting of a copper electrode and a zinc electrode dipped in sodium chloride solution.

The student gradually increased the distance, d, between the electrodes to study the effect on the initial current, I, passing through the light bulb.

The student hypothesized that the initial current would be inversely proportional to the distance between the electrodes.

The following data was collected over five trials.

The data did not support the student’s hypothesis. He investigated other possible relationships by plotting a graph of the average current against the distance between the electrodes. He obtained the following best-fit line with a correlation coefficient (r) of −0.9999.

Sketch a graph that would support the student’s hypothesis.

[1]
a.

Suggest what the correlation coefficient of −0.9999 indicates.

[1]
b.i.

State the equation of the straight line obtained using the data.

[1]
b.ii.

Outline how current flows in the sodium chloride solution.

[1]
b.iii.



The structures of oseltamivir (Tamiflu) and zanamivir (Relenza) are given in section 37 of the data booklet.

Compare and contrast the structures of oseltamivir and zanamivir, stating the names of functional groups.

[2]
a.i.

Deduce the wavenumber of one absorbance seen in the IR spectrum of only one of the compounds, using section 26 of the data booklet.

[1]
a.ii.

Suggest one ethical consideration faced by medical researchers when developing medications.

[1]
b.



Polymers have a wide variety of uses but their disposal can be problematic.

Draw a section of isotactic polychloroethene (polyvinylchloride, PVC) showing all the atoms and all the bonds of four monomer units.

[2]
a.

The infrared (IR) spectrum of polyethene is given.

Suggest how the IR spectrum of polychloroethene would differ, using section 26 of the data booklet.

[1]
b.

Identify a hazardous product of the incineration of polychloroethene.

[1]
c.

Explain how plasticizers affect the properties of plastics.

[2]
d.

Suggest why the addition of plasticizers is controversial.

[1]
e.



Octane number is a measure of the performance of engine fuel.

Suggest why a high-octane number fuel is preferable.

[1]
a.

Reforming reactions are used to increase the octane number of a hydrocarbon fuel.

Suggest the structural formulas of two possible products of the reforming reaction of heptane, C7H16.

[2]
b(i).

The 1H NMR spectrum of one of the products has four signals. The integration trace shows a ratio of the areas under the signals of 9 : 3 : 2 : 2.

Deduce the structural formula of the product.

[1]
b(ii).